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This work is dedicated to all planetary stewards
and guardians of our natural world, for their work of protecting nature’s

most valuable individuals and our common home.
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ABSTRACT

Rossi, T.J.A. Predicting Drivers of Change’s Impacts on Pollinators Bees
Behaviour and Efficiency using Deep Learning. 2023. 38p. Monograph (MBA in
Artificial Intelligence and Big Data) - Instituto de Ciéncias Mateméticas e de
Computacao, Universidade de Sao Paulo, Sao Carlos, 2023.

In nature, approximately ninety percent of flowering plants rely on pollinators for pollen
transfer and sexual reproduction. These plants are crucial for ecosystem functioning,
providing food, habitats, and resources for many animal species, including humans. However,
human activities are responsible for changes in ecosystem networks that negatively impact
the behavior and efficiency of pollinating bees. The direct and indirect consequences
surpass human understanding and conventional tools for addressing the functioning and
responses of complex adaptive systems, thus requiring new approaches and techniques.
Since pollinators are a highly sensitive part of an ecosystem, it was questioned whether
Deep Learning algorithms could be an alternative to predict impacts of anthropogenic
interventions on pollinator insect populations. Our study evaluated the performance of five
algorithms (Linear Regression, Random Forests, Gradient Boosting Machines, Dense Neural
Networks, and Long Short-Term Memory) in predicting occurrences of disruptions and
anomalies that may impact bees and their hives. The most effective algorithms evaluated
were LSTM and GBM, particularly in the dataset relating to the use of neonicotinoid

pesticides.

Keywords: Pollinators. Drivers of Change. Prediction. Deep Learning.






RESUMO

Rossi, T.J.A. Predicting Drivers of Change’s Impacts on Pollinators Bees
Behaviour and Efficiency using Deep Learning. 2023. 38p. Monografia (MBA em
Inteligéncia Artificial e Big Data) - Instituto de Ciéncias Matematicas e de Computacao,
Universidade de Sao Paulo, Sao Carlos, 2023.

Na natureza, cerca de noventa por cento das plantas com flores dependem de polinizadores
para transferir o pélen para realizar a reproducao sexual. Essas plantas sao criticas no
funcionamento dos ecossistemas, pois fornecem alimentos, formam habitats e fornecem
outros recursos para muitas espécies animais, incluindo humanos. Por outro lado, as
atividades humanas sdo responsaveis por mudancas nas redes ecossistémicas que afetam
negativamente o comportamento e a eficiéncia das abelhas polinizadoras. Consequéncias
diretas e indiretas superam a compreensao humana e as ferramentas convencionais para
abordar o funcionamento e as respostas de sistemas adaptativos complexos, portanto,
novas abordagens e técnicas sao necessarias. Como os polinizadores sdo uma parcela muito
sensivel de um ecossistema, questionou-se se algoritmos de Deep Learning se apresentam
como uma alternativa para prever impactos de intervenc¢oes antropicas sobre populagoes
de insetos polinizadores. Nosso estudo avaliou a performance de cinco algoritmos (Linear
Regression, Random Forests, Gradient Boosting Machines, Dense Neural Networks e Long
Short-Term Memory) em prever a ocorréncia de disrupgao e anomalias que podem impactar
abelhas e suas colméias. Os algoritmos de maior performance avaliados foram o LSTM e o

GBM, ao avaliar o conjunto de dados que relaciona o uso de pesticidas neonicotindides.

Palavras-chave: Polinizadores. Agentes de mudancas. Predicdo. Deep Learning.






2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.2.1
3211
3.2.1.2
3.2.2
3221
3.2.2.2
3.2.3
3231
3.3
3.4
34.1
3411
34.2
3421
3.5
35.1
35.2
3.53
3.6

CONTENTS

INTRODUCTION . . . . . . e e e e e e e s 17
Research Questions . . . . . . . . . . ... ... L. 18
THEORETICAL FRAME OF REFERENCE . . . . . ... ... ... 19
The Importance of Pollinators . . . . . . . . ... ... ... . .... 19
Drivers of Change . . . . . . . . .. . . . ... ... .. 19
Machine Learning Algorithms and Convolutional Neural Networks . 20
Making Predictions in Biology with Deep Learning . . . . . . . . .. 21
Datasets Availability and Related Studies . . . . . . . . . .. ... .. 22
MATERIAL AND METHODS . . ... ... ... ... ....... 23
Data Search and Collection . . . . . . . . ... ... ... . ...... 23
Preprocessing . . . . . . . .. .. 24
HOneyBee Online Studies- HOBOS . . . . . . ... ... ... ... ... 24
Data Cleaning . . . . . . . . . . . 25
Feature Engineering . . . . . . . . .. Lo 25
Turkish Beekeeper's Monitoring . . . . . . .. .. ... ... ... 25
Data Cleaning . . . . . . . . . . . 25
Feature Engineering . . . . . . . . ... Lo 26
HoneyBees and Neonic Pesticides . . . . . . .. . ... ... ... .... 26
Data Cleaning and Feature Engineering . . . . . . . . . . ... ... ... 27
Data Transformation . . . . . . . . . . ... ... ... ... ... 28
Modeling . . . . . . . . . . 29
Machine Learning . . . . . . . . .. 29
Linear Regression and Random Forests . . . . . . . . . .. ... ... ... 29
Deep Learning . . . . . . . .. 29
Model Training and Evaluation . . . . . . . .. ... .. .. ... ..... 29
Results . . . . . . . . . 30
HOneyBee Online Studies- HOBOS . . . . . . . . ... ... ... .... 30
Turkish Beekeeper's Monitoring . . . . . . .. .. ... ... ... 31
HoneyBees and Neonic Pesticides . . . . . . .. .. .. ... ... .... 31
Discussion . . . . . . . ... 32
CONCLUSIONS . . . . . e e e e e e e e e e 35

REFERENCES . . . . . . . . . . . e 37






17

1 INTRODUCTION

Pollination is an important ecosystem function provided by a variety of arthropod
species. The conservation of pollinator habitat can enhance overall biodiversity and the
ecosystem services it provides (including pest population reduction), protect soil and

water quality by mitigating runoff and protecting against soil erosion, and enhance rural
aesthetics (WRATTEN et al., 2012).

To understand the influence of global change on species survival and pollination,
we need to understand the fact that all species are connected by ecological interactions
(LIBRAN-EMBID et al., 2021). Plant-pollinator interactions, for example, are mutualistic
associations fundamental to the reproductive success of 88% of all flowering plants and
consequently to the functioning of natural and agricultural systems (LIBRAN—EMBID et
al., 2021).

The loss of these pollinators is likely to have serious consequences for both general
biodiversity and crop productivity (WRATTEN et al., 2012)(Kevan and Phillips, 2001).
The survival and development of honey bee colonies is influenced by the regularity, quality
and quantity of nectar and pollen (WRATTEN et al., 2012)

Drivers of change in these ecosystem networks are a major concern of today’s
scientific research, as they are responsible for decreasing biodiversity and the extinction of
arthropod species in a habitat (SEIBOLD et al., 2019).

However, assessing sources and outcomes is a difficult task because direct and indi-
rect consequences in surmount human understanding and conventional tools in addressing
complex adaptative systems functioning and responses. This brings relevance for novel
approaches and techniques empowered by modelling tools, machine learning algorithms,
remote sensing and big data(CAPINHA et al., 2021).

In this context, the use of bioindicators like pollinators is a very common technique
for assessing impacts and environmental quality since they are a very sensitive parcel of an
ecosystem. Moreover, anthropogenic interventions like land-use intensification and habitat

fragmentation are a common subject of research and source of data.

Insects, as stated by (GEROVICHEV et al., 2021) are optimal subjects for ecoinfor-
matic research due to their high abundance, wide distribution and key roles in ecosystem
functions. They have crucial impacts on human well-being, both positive (pest control

and agricultural pollination) and negative (crop damage and vectoring of disease).

Much research effort is therefore aimed at detecting changes in insect populations,

and devising strategies to promote or mitigate these changes. Many important processes
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in insect ecology occur over large scales in space (e.g., long-term migrations) or time (e.g.,
multi-year population cycles), and thus are difficult to study using standard experimental

approaches (GEROVICHEV et al., 2021).

The current leading approach to biological problems within Machine Learning is
supervised learning using deep neural networks (DNNs), and particularly convolutional

neural networks (CNNs), which are able to extract abstract high level features from images
(GEROVICHEV et al., 2021).

1.1 Research Questions

This paper evaluates the learned models for predicting the impact of anthropic
action, determining whether they present an acceptable and reliable prediction, and
determine which model has a better performance than others. In light of challenges and
problems currently faced in predicting drivers of change impact in pollinators species, the

following research questions were elaborated in order to guide this project:

Q1 “Do Deep Learning algorithms present themselves as an alternative to predict

anthropic interventions impacts over insect pollinator populations?'

Q2 'Is it possible to evaluate the learned models for predicting the impact of
anthropic action, determining whether they present an acceptable and reliable prediction,

and determining which model has a better performance than others?'

Given these research questions, the following objectives for the development of this

work are defined:

1. Map the learning algorithms used in the ecological spatio-temporal data analysis.
Use the best learning algorithms to develop a simple application, able to classify the
impacts and predict the probability of their occurrence. This objective is related to

the research question Q1.

2. Analyze the gaps and performance of the available algorithms. The proposed appli-
cation must attain a performance that is comparable to other prediction approaches

to ecological events based on time series. This goal is related to the research question

Q2.
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2 THEORETICAL FRAME OF REFERENCE

2.1 The Importance of Pollinators

Interactions between plants and pollinators are mutualistic associations fundamen-
tal to the reproductive success of 88% of all flowering plants and consequently to the
functioning of natural and agricultural systems (OLLERTON; WINFREE; TARRANT,
2011). Understanding the properties of their interactions and networks gives information
about their functionality and stability, which ultimately determines species persistence
(KLEIN et al., 2007).

Plant-pollinator interaction networks may be particularly susceptible to anthro-
pogenic changes, owing to their sensitivity to the phenology, behavior, physiology, and
relative abundances of multiple species (TYLIANAKIS et al., 2008).

Studies have shown (WRATTEN et al., 2012) that habitat loss was the human
activity most significantly detrimental to the abundance and diversity of bees, particularly
in extremely disturbed landscapes. Also, a growing body of research has demonstrated

that farms located in close proximity to natural areas can receive all of their pollination
services from wild bees alone (WRATTEN et al., 2012).

2.2 Drivers of Change

Pollination interactions are important as they benefit both biodiversity and humans.
A great diversity of plants and animals mainly insects, but also some birds, lizards and
mammals depend mutually on each other for pollination and food, and their interactions

may influence population persistence (HEGLAND et al., 2009).

As the drivers of change are responsible for affecting the interconnectivity of
relationships among species, a metanetwork approach can be used to identify key traits
of habitat fragments that are fundamental to maintain metacommunity functionality

(LIBRAN-EMBID et al., 2021).

Moreover, in general, a small proportion of species are structurally important to a
network, however, when these are lost, cascades of extinctions might occur, leading to a
general collapse of the system (LIBRAN—EMBID et al., 2021).

Climate change may be cited as an important driver of change as temperature
affect the availability of resources for species. However, whether climate warming will
affect ecosystem functioning depends on how interactions among species are influenced.
Alterations in trophic relationships and energy-flows in both predator-prey and plant-

herbivore interactions as a consequence of rising temperatures (STENSETH; MYSTERUD,
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2002).

The fragmentation of habitats is another key driver of change in species networks.
According to (RIBAS et al., 2005), several ecological processes may occur after a fragmen-
tation event. These events are linked in a network of events that frequently lead to species

loss, which, therefore, may determine species richness in each remnant.

One of the main causes of habitat fragmentation is the increasing land-use for agri-
cultural intensification. Although it is unclear (SEIBOLD et al., 2019) whether agricultural
intensification is a direct driver of arthropod decline in abundance, it affects indirectly
(e.g. fragmentation for agricultural purposes), the insect species that rely on wild resources

provided in a spatio-temporal scale.

Along with the agricultural intensification, the increasing use of pesticides for crop
protection is also related to a decline in pollinators abundance (WILLIAMS et al., 2010),
specially because these arthropods are very sensitive to disturbances, either due to a

decline in other insect population or the use of non-specific pesticides.

2.3 Machine Learning Algorithms and Convolutional Neural Networks

Machine Learning Algorithms (ML) and Convolutional Neural Networks (CNNs)
have been applied in a variety of purposes and researches. Regarding this work, the
pattern recognition are effective examples of their application for time series classification
(CAPINHA et al., 2021).

In this context, learning can occur in two different manners: without supervision,
where computers automatically discover patterns and similarities in unlabeled data; or,
with supervised training, where a labelled dataset is first given to the computer, in order

to train and associate the labels to the examples;

With CNNs, automated learning procedures are possible by decomposing the data
into multiple layers, each with different levels of abstraction, that allow the algorithm to
learn complex features representing the data (CHRISTIN; HERVET; LECOMTE, 2019).

A great deal of ML algorithms have been available for decades, and most notably
neural networks. However, until recently, constraints of computational architecture and
power have restricted their application, and especially for issues as data-intensive as climate
change (BAUER, 2021). As it is a complex scientific and multi-faceted issue, amenable to
ML and AT analysis.

CNNs are a family of multilayered neural networks constituting a class of deep, feed-
forward artificial neural networks (ANNs) that have been successfully applied to computer
vision applications (CHRISTIN; HERVET; LECOMTE, 2019). CNNs typically contain
a number of common components, including convolution, pooling and fully connected

layers, in different configurations that are connected successively to perform some complex-
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learning tasks (YANG; XU, 2021). Therefore, Deep networks have the potential to model
the influence of environmental variables on living species, even though they have not yet

been applied in this way (CHRISTIN; HERVET; LECOMTE, 2019).

2.4 Making Predictions in Biology with Deep Learning

In ecology, time series classification is generally approached by processing the time
series data into a set of summary variables and then using these variables as predictors in

classical’ supervised classification algorithms, such as logistic or multinomial regressions
or random forests (CAPINHA et al., 2021).

With traditional machine learning algorithms, feature extraction requires human
supervision, whereas deep learning tools can learn by themselves very complex representa-
tions of data due to their multilayered nature (CHRISTIN; HERVET; LECOMTE, 2019).
This feature is one of the main reasons that makes Deep Learning algorithms a better and

easier approach for ecological spatio-temporal researches: performance.

Using general learning procedures, deep learning algorithms are able to automati-
cally detect and extract features from data. However, these results depend on the existence
of a sizeable labelled dataset that can be used to train the algorithms to extract the desired
features from the data. Deep learning may be considered especially appropriate when
analyzing large amounts of data, and it performs particularly well for complex tasks such
as image classification or speech/sound recognition (CHRISTIN; HERVET; LECOMTE,
2019).

Deep learning and neural network approaches avoid specifying a process-based
model, which makes it more data-led, improving the understanding of multivariate relation-
ships in nonlinear systems (BAUER, 2021). These approaches allow classifying phenomena
directly from raw time series data, a characteristic that requires ecologists to think more
critically about the temporal component of the phenomena being classified (CAPINHA
et al., 2021). Algorithms used in the recent literature for plant pollinator interactions
(PICHLER et al., 2019), are assessing predictive and inferential performance of the models,

creating a minimal simulation model.

The functioning and stability of ecosystems can then be monitored by converting
all these species data and interactions into food web models and/or focusing on indicator
species, which are very sensitive to habitat and climate changes (Mac Aodha et al., 2018).
Beyond that, the same sort of ‘fully’ temporally explicit approach can be exploited for
virtually any ecological or biological entity or state, as long as the putative drivers have a
temporal dimension (CAPINHA et al., 2021).
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2.5 Datasets Availability and Related Studies

Deep Learning algorithms, as stated before, rely on great amounts of data. Their
availability is a recurrent issue in biological studies and prediction algorithms because
time series classification is generally approached by processing the time series data into a

set of summary variables (CAPINHA et al., 2021), an approached known as feature-based.

However, some limitations still undermine their predictive performance and scala-
bility (e.g. the need for domain-specific knowledge about the phenomenon that is being
classified) (CAPINHA et al., 2021). When considering the ever-growing body of knowl-
edge in the ecological literature, few, if any, ecological phenomena are fully understood
(CURRIE, 2019).

Recent publications in the literature have started to use Creative Commons Licenses
to share datasets and codes, like (CAPINHA et al., 2020), where the datasets represent
classification tasks that are predominantly approached by ecologists through feature-based
approaches. Beyond that, public datasets from Official Sources like the IPBES (POTTS,
) and others, are key publications that may increase data availability along with other
relevant options. Ecology scientists and researchers might also benefit from the upcoming
Data Markets that use Blockchain for tokenizing Data Assets like the Ocean Market

Protocol.
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3 MATERIAL AND METHODS

In this study, I conducted two distinct experiments, each employing a unique set
of variables. Initially, the Turkish Beekeeper’s Monitoring System Dataset was analyzed,
aiming to predict temperature and humidity anomalies. This analysis was intended to
inform the approach to the subsequent evaluation of the HOneyBee Online Studies
(HOBOS) dataset. In the examination of the HOBOS dataset, the focus was on assessing
the predictability of the impact that "Temperature’ and "Humidity’ exert on the "Flow’
variable. Specifically, the goal was to identify patterns that would indicate increases or
decreases in bee traffic, defined as the movement of bees into or out of a hive. This
dual-experiment approach allowed for a comprehensive understanding of the environmental

factors affecting bee behavior in apiaries.

The second experiment of the study focused on investigating the relationship
between the use of neonicotinoid pesticides and honey production in the United States.
This experiment was designed to evaluate the correlation among key factors: the number
of bee colonies, yield per colony, total honey production, and the extent of neonicotinoid
pesticide usage. By examining these variables, the aim was to gain insights and predict the
impact of these pesticides on bee populations and honey production, thereby contributing

valuable data to the ongoing discourse on the environmental effects of neonicotinoids.

3.1 Data Search and Collection

The present study employed a multi-faceted approach combining Machine Learning
and Deep Learning algorithms to analyze and predict the impacts of environmental changes
on pollinator bees and hives. Data were searched using Capes repository for scientific
articles, Google Dataset Search, The Center for Plant Conservation, The Database of

Pollinator Interactions and Kaggle.

The methodology is structured into distinct phases: initially, data collection focused
on bees and their environmental drivers, followed by employing Machine Learning models
for time series forecasting. Subsequently, Random Forests were utilized for predictions,
with thorough data cleaning and normalization processes to ensure data integrity. The final
phase involved rigorous training and comparative analysis of these models to ascertain

their predictive accuracy.
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3.2 Preprocessing
3.2.1 HOneyBee Online Studies - HOBOS

This data set, referred to as "HOBOS," contains records of beehive metrics, including
temperature, humidity, and bee flow. The dataset was collected from the HOBOS Project,
a network of beehive monitoring stations equipped with HOBOS sensors. These sensors

continuously recorded environmental conditions and bee activity over a specified period.

The data set provided 50,724 rows and 5 columns of data. The columns include
the following variables: timestamp, weight, temperature, humidity, and flow. There were
22,972 missing values in the columns weight and humidity, and 3,768 in the temperature
column. The flow column has only one missing value. The column weight was withdrawn
from the analysis as the purpose of the study was to understand the correlation between
climate variables and flow. For the remaining columns, all missing values were imputed

with the median for each column.

For this data set, an Exploratory Data Analysis (EDA) and a correlation analysis
(fig. 1) was conducted to understand the strength and direction of the relationship between
the variables. The analysis helped in identifying patterns, before conducting a predictive

analytics, and data exploration.

Correlation Heatmap
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Figure 1 — HOBOS Correlation Heatmap.
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3.2.1.1 Data Cleaning

The initial dataset underwent a data cleaning process to ensure data quality and

consistency. This process involved the following steps:

1. Removal of the 'weight” column: The "weight’ column was removed as it was deemed

irrelevant for the analysis.

2. Imputation of Missing Values: Missing values in the 'temperature,” "humidity,” and

'flow’ columns were imputed with the median value of each respective column.

3.2.1.2 Feature Engineering

Feature engineering was performed to create new variables that could potentially
capture the influence of ideal temperature and humidity conditions on bee flow. Two new

binary variables were introduced:

e 'temp_in_ideal range’: This binary variable indicates whether the temperature

falls within the ideal range of 21 to 35 degrees Celsius.

e 'humidity in_ideal range’: This binary variable indicates whether the humidity
falls within the ideal range of 50% to 70%.

3.2.2  Turkish Beekeeper’s Monitoring

This dataset was collected by a beekeeper in an apiary located in Canakkale,
Turkey. The dataset includes detailed records of various beehive parameters such as
temperature (‘T Hive') and humidity (‘RH_Hive‘). This dataset was compiled from

advanced monitoring systems installed in beehives.

The data set provided 12,147 rows and 15 columns. The dataset contains columns
like Hour, DateTime, T Hive (hive temperature), RH_Hive (hive relative humidity), AT -
Hive (apparent hive temperature), Tamb (ambient temperature), RHamb (ambient relative
humidity), ATamb (apparent ambient temperature), and several columns comparing
temperature and apparent temperature differences between different hives and ambient
conditions with no missing values. An EDA and correlation analysis (fig. 2) were conducted,

evaluating the correlation between the variables and how each variable relate to each other.

3.2.2.1 Data Cleaning
The initial data cleaning steps for the dataset involved two key processes:
1. Removal of Extraneous Columns: Columns that were not relevant to the study’s

objectives were identified and removed. This step was crucial to focus the analysis

on meaningful data and reduce computational complexity.
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Figure 2 — Turkish Beehives Correlation Heatmap.

2. Imputation of Missing Values: For essential variables like temperature and humidity,
which had missing values, a median imputation technique was employed. This
involved replacing missing data with the median value of each respective column.
The choice of median (over mean, for example) helped in mitigating the impact of
potential outliers in the data, ensuring a more robust approach to handling missing

values.

3.2.2.2 Feature Engineering

Feature engineering was conducted to establish binary indicators for temperature
and humidity anomalies. These were based on specific threshold values, identifying sig-
nificant deviations from normal patterns. Temporal attributes were extracted from the

‘DateTime’ column, facilitating the analysis based on time-series data.

3.2.3 HoneyBees and Neonic Pesticides

This dataset utilizes Honey Production in the USA, extended to the period 1998-
2017. The dataset also includes data from USGS’s Pesticide National Synthesis Project,
which allows evaluation of the statistical connections between Honey Production and the

use of Neonicotinoid (neonic) pesticides.

The data set provided 1,957 rows and 17 columns of data. The columns include state,

numcol (number of colonies), yieldpercol, totalprod (total production), stocks, priceperlb
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(price per pound), prodvalue (production value), year, StateName, Region, FIPS (Federal
Information Processing Standards code), and various neonicotinoid pesticide measure-
ments (nCLOTHIANIDIN, nIMIDACLOPRID, nTHIAMETHOXAM, nACETAMIPRID,
nTHIACLOPRID, nAllNeonic).

There were 825 missing values in the 'FIPS” column and 301 missing values in the
'nCLOTHIANIDIN’, 'nIMIDACLOPRID’, 'nTHIAMETHOXAM’, 'nACETAMIPRID’,
'nTHIACLOPRID’, 'nAllNeonic’ columns each. The columns stocks, priceperlb, prodvalue,
StateName, Region and FIPS were excluded from the analysis. The median values were
imputed in the neonic columns with missing values and the correlation between the remain

columns is highlighted in Figure 3.
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Figure 3 — Neonic Correlation Heatmap.

3.2.3.1 Data Cleaning and Feature Engineering

The dataset was cleansed of any irrelevant data. Columns not pertinent to the
study, such as economic values and regional identifiers, were removed. Missing values
within the dataset were addressed by imputing them with the median values of their

respective columns.

To ensure consistency in data scale and range, a normalization process was applied
to all numerical variables within the dataset. This step was crucial to prepare the data for

effective analysis and modeling. A new feature representing the cumulative exposure to
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various neonicotinoids was engineered. This feature was calculated by summing the quanti-
ties of different types of neonicotinoids present in the dataset, providing a comprehensive

measure of neonicotinoid exposure.

In the analysis of the dataset, a critical aspect was to quantify the cumulative
exposure to various neonicotinoids, which are a class of pesticides. This cumulative exposure
feature aimed to provide a comprehensive measure of the total neonicotinoid exposure

across different types of neonicotinoid pesticides present in the dataset.

The resulting cumulative exposure value provided a comprehensive measure of the
total neonicotinoid exposure associated with each record. It effectively aggregated the
contributions of different neonicotinoid compounds, reflecting the combined impact of

various pesticides on the environment.

The feature engineering process involved the creation of a new feature that quantified
the cumulative exposure to different neonicotinoid compounds within the dataset. This
feature provides a comprehensive measure of neonicotinoid pesticide exposure, considering

all identified neonicotinoid types in the dataset.

An extensive EDA was conducted to uncover underlying patterns, relationships,
and distributions within the data. This step included examining variable correlations and

distributions to better understand the dataset’s characteristics.

3.3 Data Transformation

In the HOBOS dataset, temporal information extraction and transformation were

meticulously conducted. The key steps included:

« Timestamp Conversion: The timestamp’ column underwent conversion into a

standard datetime format for accurate temporal analysis.

« Date Feature Engineering: Essential date features, namely the day ('day’), month
('month’), and year (’year’), were derived from the datetime format and represented

as individual columns for enhanced granularity in analysis.
o Original Timestamp Removal: Post-extraction of relevant date features, the
original "timestamp’ column was removed to streamline the dataset.

For the Neonics dataset, data normalization was executed. This involved:

o Normalization of Numerical Variables: All numerical variables were normalized
to standardize data scales and ranges, a critical step for ensuring homogeneity in

subsequent analytical and modeling processes.
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The Turkish Beehives dataset underwent a similar temporal transformation:

o 'DateTime’ Column Transformation: The 'DateTime’ column was processed
to extract and structure vital temporal attributes. This included conversion into a
structured format and segmentation into separate columns for day, month, and year,
paralleling the approach used in the HOBOS dataset.

3.4 Modeling

3.4.1 Machine Learning

3.4.1.1 Linear Regression and Random Forests

In our study, Linear Regression and Random Forest algorithms were applied to the
three distinct datasets. Specifically, for the HOBOS dataset, a Linear Regression model
was developed to predict bee flow, utilizing environmental factors and date-related features.
Conversely, the Random Forest Regressor was strategically employed to investigate the
effects of neonicotinoids on hive health, primarily indicated by honey production metrics.
Lastly, for the Turkish Beehives dataset, the goal was to predict the occurrence of out of

range temperatures and humidity.

To ascertain the models’ efficacy and reliability, a cross-validation method was
employed. Additionally, the models’ predictive capabilities were further evaluated using a
separate test data sets with an 80% - 20% parametrisation. This approach ensured the
robustness and generalizability of the findings, providing a comprehensive understanding

of the models’” performance in real-world scenarios.

3.4.2 Deep Learning

Two types of neural network models were developed: LSTM (Long Short-Term
Memory) and DNN (Dense Neural Network). The LSTM model was designed to capture
temporal dependencies in the time-series data, while the DNN focused on identifying
complex patterns in the dataset. The LSTM model was structured with LSTM layers,
dropout for regularization, and a dense output layer. The DNN model comprised multiple

dense layers with dropout layers to prevent overfitting.

3.4.2.1 Model Training and Evaluation

Both models were compiled and trained on the dataset, with specific loss functions
tailored to each model’s architecture and objectives. The LSTM model focused on mini-
mizing the mean squared error (MSE), suitable for continuous data prediction. In contrast,

the DNN was evaluated on its classification accuracy.
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3.5 Results
3.5.1 HOneyBee Online Studies - HOBOS

The results of the Linear Regression model, the Random Forest model (executed
separately), and GBM were compared and analyzed to assess their effectiveness in predicting

bee flow based on environmental factors and date features.

The performance of three MLi Algorithms was evaluated: Linear Regression, Random
Forest, and Gradient Boosting Machine (GBM). The assessment of the dataset using showed
the Linear Regression model with a notably higher MSE of 394094.57 and a substantially
lower R? of 0.0492, highlighting a weaker predictive performance. The Random Forest
algorithm, however, demonstrated enhanced efficiency with an MSE of 235963.91 and an R?
of 0.4307. GBM, with an MSE of 294627.85 and an R? of 0.2892, indicated a better fit than
Linear Regression but was outperformed by Random Forest. This comparison underscores

the varying effectiveness of these algorithms depending on the dataset characteristics.

Algorithm MSE R?2

Linear Regression | 394094.5696341925 | 0.049192539343682395
Random Forest 235963.91034882396 | 0.430704547353817
GBM 294627.8503151977 | 0.2891697075226136

Table 1 — ML Algorithms Evaluation - MSE and R? - HOBOS

Two deep learning algorithms were also evaluated: a Deep Neural Network (DNN)
and a Long Short-Term Memory network (LSTM). In the comparative analysis of LSTM
and DNN models for predicting, the LSTM model exhibited a superior performance. The
LSTM achieved a Mean Squared Error (MSE) of 23.7944, which was lower than the DNN’s
MSE of 28.5150, indicating a higher precision in predictions. Furthermore, the LSTM
model demonstrated a more robust fit to the data with a Coefficient of Determination
(R2) of 0.7749, compared to the DNN’s R2 of 0.7303. This indicates that the LSTM
model could explain approximately 77.49% of the variance in the dependent variable,
surpassing the DNN’s capability, which accounts for about 73.03% of the variance (Table
2). These findings suggest that LSTM models may provide enhanced predictability in

similar scenarios where capturing long-range dependencies and sequential patterns in data

is crucial.
Algorithm | MSE R?2
DNN 28.514998018314134 | 0.7302561946626089
LSTM 23.7943699800498 0.7749119989451823

Table 2 — Deep Learning Algorithms Evaluation - MSE and R? - HOBOS
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3.5.2  Turkish Beekeeper’s Monitoring

For the Turkish Beehives’ Dataset, the Linear Regression model exhibited a Mean
Squared Error (MSE) of 25.274 and an R-squared (R?) of 0.409, indicating moderate
predictive accuracy. The Random Forest model resulted in a slightly higher MSE of 27.060
and a lower R? of 0.368, suggesting less predictive efficiency compared to Linear Regression.
Conversely, the GBM demonstrated superior performance with the lowest MSE of 23.424
and the highest R? of 0.453. These results illustrate that while Linear Regression provides
a reasonable baseline, GBM offers a more precise predictive capability in this context,

outperforming both Linear Regression and Random Forest.

Algorithm MSE R?

Linear Regression | 25.274020998625446 | 0.40933201231207206
Random Forest 27.060282014467006 | 0.3675860946454724
GBM 23.42408968062116 | 0.45256594050362864

Table 3 — ML Algorithms Evaluation - MSE and R? - Turkish

The Deep Learning algorithms presented higher accuracy than the other datasets
as the DNN achieved an MSE of 25.274 and an R? of 0.4093, indicating a moderate level
of predictive accuracy. The LSTM, on the other hand, showed a slightly higher MSE of
27.060 and a lower R2? of 0.3676. These results suggest that while both models have a
fair predictive capability, the DNN slightly outperforms the LSTM in terms of both error

minimization and variance explanation in this particular scenario.

Algorithm | MSE R?2
DNN 25.274020998625446 | 0.40933201231207206
LSTM 27.060282014467006 | 0.3675860946454724

Table 4 — ML Algorithms Evaluation - MSE and R? - Turkish

3.5.3 HoneyBees and Neonic Pesticides

The assessment of a different dataset using the same algorithms yielded contrasting
results. The Mean Squared Error (MSE) and R-squared (R?) values for the Linear Regres-
sion exhibited an MSE of 0.001116621 and an R? of 0.942457, indicating a high degree
of model fit. Random Forest, with an MSE of 7.78e-05 and an R? of 0.995989, showed
superior predictive accuracy. GBM outperformed both with the lowest MSE of 5.43e-05
and the highest R? of 0.997199, suggesting exceptional model precision and predictive
capability. These results demonstrate the effectiveness of ensemble methods like Random

Forest and GBM in capturing complex patterns in data.

For the Neonics dataset models, The DNN achieved an MSE of approximately
6.71e-05 and an R? of 0.0492 (Table 6), indicating a low error but also a low proportion of
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Algorithm MSE R?2

Linear Regression | 0.0011166210745929578 | 0.9424572362099335
Random Forest 7.781883991855942¢-05 | 0.9959897666041427
GBM 5.434662973006844e-05 | 0.9971993585393474

Table 5 — ML Algorithms Evaluation - MSE and R? - Neonics

variance explained in the dependent variable. In contrast, the LSTM showed significantly
better performance with an MSE of 0.000285 and an impressive R? of 0.9872, demonstrating
a high degree of predictive accuracy and the ability to capture complex patterns in the
data. These results highlight the LSTM’s superior capability in modeling sequential data
compared to the DNN in this specific context.

Algorithm | MSE R?
DNN 6.712691060459702¢-05 | 0.049192539343682395
LSTM 0.00028471731527383485 | 0.9872039415434115

Table 6 — Deep Learning Algorithms Evaluation - MSE and R? - Neonics

The LSTM and DNN models demonstrated high predictive accuracy, indicated
by low MSE values and high accuracy percentages, respectively. This suggests a strong

capability in forecasting anomalies in beehives.

3.6 Discussion

The present study applied advanced machine learning techniques to three different
datasets to predict environmental anomalies in beehives and their impact on bees. The
approach involved data preprocessing, cleaning and transformation, to ensure data quality.
The LSTM and Dense Neural Network models demonstrated predictive capabilities, as
evidenced by low MSE and high accuracy metrics. However, the possibility of overfitting
warrants further investigation. This study highlights the potential of deep learning in
ecological monitoring, emphasizing the need for robust validation and the exploration of
model applicability in diverse ecological scenarios. Future work should focus on model

refinement and testing the models’ generalizability across various ecological settings.

The findings must be contextualized within the constraints of data availability
and study design. Data Challenges: One of the primary challenges faced was the limited
availability of comprehensive datasets. The existing data on pollinator behavior and
environmental factors was fragmented and often lacked the granularity necessary for deep
learning algorithms to achieve optimal accuracy. This limitation necessitated a reliance
on interpolations and assumptions that may have introduced biases or oversimplifications

into the models.
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A Lack of Longer Time Series: Another significant challenge was the absence of
long-term data. Pollinator behaviors and environmental changes are phenomena that
unfold over extended periods, often spanning several years to decades. The lack of longer
time series limited the ability to comprehensively model and predict the long-term impacts
of environmental changes on pollinator efficiency and behavior. This temporal limitation
restricts a deep understanding of more subtle or delayed effects that might only become

apparent over extended periods.

Generalizability of Studies: Additionally, the generalizability of the findings is
constrained due to the limitation on specific regions and bee species, which may not
accurately represent global patterns. The ecological dynamics in different geographical
areas can vary significantly, thereby affecting the applicability of results to other contexts.
This limitation underscores the need for more generalized, globally inclusive studies to

enhance the understanding of environmental impacts on pollinators at a broader scale.

Broader Studies and Variable Inclusion: Furthermore, the research highlights a
notable gap in broader studies that simultaneously incorporate multiple variables within
the same region. Most existing research tends to focus on isolated variables or specific
aspects of pollinator behavior. This narrow focus limits the understanding of how multiple
factors synergistically affect pollinators. Additionally, there is a distinct lack of global
studies evaluating consistent metrics across different regions. Such studies are crucial for
developing a holistic understanding of pollinators’ responses to environmental changes on a
global scale. Addressing these gaps would significantly enhance the ability to devise effective

conservation strategies and predict future ecological scenarios with greater accuracy.

Despite these challenges, the study contributes valuable insights into the complex
interplay between environmental factors and pollinator behavior. Future research should
aim to address these limitations by securing more comprehensive datasets, extending
the duration of observational studies, and focusing on a broader range of species and
geographical areas. Such efforts will not only refine the understanding of these ecological
dynamics but also enhance the predictive capabilities of deep learning models in ecological

research.
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4 CONCLUSIONS

In this study, machine and deep learning algorithms were utilized to unravel the
intricate effects of environmental changes on the behavior and efficiency of pollinator bees.
Despite confronting challenges like limited datasets and the lack of extensive time series,
research offers significant insights into these vital ecological components. Our findings
stress the imperative need for comprehensive, long-term, and globally inclusive research
to effectively steward pollinator bees against the intensifying environmental alterations.
Machine Learning and Deep Learning algorithms rely greatly in good data, as highlighted

by the performance differences among the algorithms.

The results underscore the importance of selecting an appropriate algorithm based
on the specific characteristics of the dataset and the objectives of the model, highlighting
the efficacy of each algorithm in handling complex patterns in sequential data accordingly to
each data collection and dataset framework. Moving forward, this study not only contributes
to the academic understanding of pollinator dynamics but also for understanding how
different variables and data structures require different algorithmic and learning approaches.
Moreover, the expectations are that the study may serve as an incentive for policy
formulation, long term monitoring and research of conservation strategies. Such efforts
are vital for preserving the health of pollinator populations, which are indispensable for

ecosystem sustainability and agricultural productivity.
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